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We compute the Lyapunov exponent, the generalized Lyapunov exponents, and 
the diffusion constant for a Lorentz gas on a square lattice, thus having infinite 
horizon. Approximate zeta functions, written in terms of probabilities rather 
than periodic orbits, are used in order to avoid the convergence problems of 
cycle expansions. The emphasis is on the relation between the analytic structure 
of the zeta function, where a branch cut plays an important role, and the 
asymptotic dynamics of the system. The Lyapunov exponent for the corre- 
sponding map agrees with the conjectured limit 2m,p = - 2  log(R) + C+ O(R) 
and we derive an approximate value for the constant C in good agreement with 
numerical simulations. We also find a diverging diffusion constant D(t)~ log t 
and a phase transition for the generalized Lyapunov exponents. 

KEY WORDS: Lyapunov exponents; anomalous diffusion; Lorentz gas, zeta 
functions; branch points. 

1. I N T R O D U C T I O N  

Perhaps the best -known measure of a chaotic system is the Lyapunov  expo- 

nent. In the theory of chaotic dynamics one is of course interested in calculat- 
ing this and similar quantities, either by finding analytical estimates or by 
devising effective calculation schemes,~5~ but  often one finds oneself compelled 
to use numerical  simulation. This is unsatisfactory since it is not  an easy task 
to extract information on the asymptotic behavior  from numerical  data. 

Various a,cerages of chaotic systems are obta inable  via transfer 
operators and their F redho lm determinants  or zeta f imct ions .  This is a 
beautiful formalism, bu t  the best results are obta ined for a very restricted 
class of chaotic systems, namely those fulfilling Axiom A. This is because 
Axiom A guarantees nice analytical  features of the zeta functions t~-4~ 
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yielding rapidly, convergent cycle expansions enabling efficient deduction 
of its leading zeros. ~5~ Applications of cycle expansions to non-Axiom A 
systems are not very successful, t6' 7) 

In this paper we will study a system which is far from the textbook ld 
Axiom A map, namely the two-dimensional Lorentz gas on a square 
lattice. This is a Hamiltonian system with two degrees of freedom, con- 
tinuous time, and infinite symbolic dynamics. We will demonstrate that 
zeta functions may be of use even here. The key point is that we will avoid 
writing the zeta function in terms of periodic orbits, as that would lead to 
divergence problems that we could not handle. The price we will pay is that 
our zeta functions are no longer exact, but they are approximate in a sense 
that does not affect the leading zero very much. The averages we will com- 
pute are directly related to the motion of this leading zero with respect to 
variations of a parameter. However, matters will be complicated if there are 
nonanalyticities in the vicinity of the leading zero, like branch cuts. This is, 
we believe, a generic feature of intermittent systems. Such singularities will 
cause problems for cycle expansions but do carry important information 
about the asymptotic dynamics. In the Lorentz gas there will be a branch 
cut reflecting the existence of the infinite horizon. It will not prevent the 
Lyapunov exponent from being well defined, but will yield a diverging dif- 
fusion constant. It will also imply a phase transition for the generalized 
Lyapunov exponents. 

The purpose of the present paper is to focus on the main principles of 
how chaotic averages may be computed from zeta functions exhibiting 
singularities close to the leading zero. In the calculation of Lyapunov 
exponents we will therefore be satisfied with a rather crude approximation 
of the zeta function, but still derive expressions in good agreement with 
numerical data in the small-scatterer limit. In the computation of diffusion 
the necessary details of the zeta function may be refined considerably with 
relative ease and we will arrive at what appears to be the exact result/TM 

In Section 2 we review the necessary theory. In Section 3 we perform 
all calculations and we then end with some comments in Section 4. 

2. THEORY 

2.1. Lyapunov Exponents and Zeta Functions 

The largest Lyapunov exponent is defined by 

2 =  lim l l o g  IA(x0, t)l 
g ~ o o  I 

(1) 
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provided the limit exists and is independent of the initial point x0 (except 
for a set of measure zero). A(xo, t) is the largest eigenvalue of the Jacobian 
along the trajectory starting at xo and evolving during time t. 

If A(xo, t) is multiplicative along the flow, as it is for one-dimensional 
systems, one can use ergodicity and write it as a phase space average 

t p (x )dx log  IA(xo, t ) l -  (log IA(xo, t)l) (2) 

where p(x) is the invariant density and t is arbitrary. If A(xo, t) is not mul- 
tiplicative along the flow (as is the case for systems with more thaws one 
dimension), one has to take the t--. oe limit in (2). Whether or not we take 
the t---, oo limit, it will reappear when we expand the invariant density in 
terms of periodic orbits (see below and Appendix). 

We now want to formulate the Lyapunov exponent in terms of zeta 
functions, but first we demonstrate how the average of an observable may 
be expanded in terms of periodic orbits. We associate the observable 
w(x0, t) with the trajectory starting at Xo and evolving during time t. This 
evolution is described by the function x=f'(xo) (saying that the initial 
point Xo is mapped onto x during time t). Moreover, we assume that the 
observable w is multiplicative along the flow, that is, 

W(Xo, tl + t2)= W(Xo, tl) w(f"(Xo), t2) 

The average of w may be written as the following periodic orbit sum (see 
Appendix): 

,, d(t-nTe) 
lim ( w )  = l i m p  Z T p L  H'p Idet(1 - M ~ ) I  (3) 

where n is the number of repetitions of primitive orbit p having period Tp, 
and M e is the Jacobian (transverse to the flow), wp is the weight associated 
with cycle p. This expression can be given a compact representation in 
terms of the evolution operator &o,.. This operator is defined by its action 
on a phase space density ~(x), 

~9~ = I w(y, t) 6 ( x - - f ' ( y ) )  ~ ( y ) d y  (4) 

The average (3) can formally be written as the trace of the weighted evolu- 
tion operator (cf. Appendix) 

lim ( w ) =  lim tr.,q.~'._= limo~ f w ( x , t ) d ( x - f ' ( x ) ) d x  (5) 
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We do not address the question of whether the trace may be interpreted as 
a sum over eigenvalues. 

Zeta functions are introduced by observing that the trace may be 
written as 

1 : ~ - i , ,  Z',,.(k) dk tr s = -  / eik' (6) 
2~i J_,~ -io Z..(k) 

For a Hamiltonian system with two degrees of freedom the zeta function 
reads(8) 

, ( e-,kT, y,,+t 
Z.,(k) I-[ f i  1 - w p  . . . .  (7) 

. . , = o  IA . I  A;/ 
where Ap is the expanding eigenvalue of Mp. 

The equality between Eqs. (3) and (6) can readily be verified by the 
reader. We only want to stress two points. (a) To be mathematically unam- 
biguous the delta functions should be understood as, e.g. Gaussians and 
the Fourier transform (6) performed over the corresponding Gaussian 
windowJ 9~ When going from (6) to (3) it is essential that the infinite 
product (7) converge so that summation and integration may be inter- 
changed. This is the case if the constant a in (6) is sufficiently large so that 
the contour goes below the leading zero of (7). 

Cycle expansions of the zeta functions generally have better con- 
vergence properties than the infinite product representation (7) since they 
converge beyond the leading zero and up to the first singularityJ 5) The zeta 
function is entire for Axiom A systems, ~4~ which makes cycle expansions 
very successful for this special case. In this paper we will consider cases 
where the zero is also a singularity (branch point), so a cycle expansion 
will not converge even there and the zeta function is rather useless as it 
stands. We return to these problems in Section 2.3. 

We must now find a weight w appropriate for computing the 
Lyapunov exponent. The quantity whose average we are going to study is 
log [A(xo, t)[, which is certainly not multiplicative. In fine dimension we 
can study the average of the multiplicative weight w =  IA(xo, t)l ~ and 
obtain the Lyapunov exponent by differentiation 

2 = ,lim 1 d tr s 
t dr ~=o (8) 

In two-dimensional systems, such as the Lorentz gas, the weight is multi- 
plicative only along the periodic orbits. But this is exactly where we 
evaluate our weights, so this departure from exact multiplicativeness does 
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not affect the validity of our considerations and all our expression are valid 
for this case as well. In ref. 10 the authors modify the weighted evolution 
operator to achieve the desired semigroup property. The modifications 
affect the analytic structure of the zeta functions high up in the complex k 
plane and have no implications for our results. 

The leading zero k0(r)= - i .  h(z) is always on the negative imaginary 
axis if r > 0 .  For unitary reasons one has ko(0)=0. The leading zero 
provides the leading asymptotic behavior of the trace provided that there 
is a gap until next zero or singularity. In that case one would have 

x = d h ( r )  l~=o (9) 

We cannot take for granted that this expression is always valid. 
Generalized Lyapunov exponents t~l~ 2(r) are defined by considering 

the scaling behavior of ([A(xo, t)l~). If the leading zero is isolated, then 
(IA(xo, t) l : )  will grow exponentially with t: 

t _ e X ( r )  r t  lim (IA(xo, t)l~) = lim tr ~ -  lim (10) 

so that 

h( r )  
).(r) = ( l l )  

T 

The ordinary Lyapunov exponent is recognized as the limit 2 =  
l i m ~ o  2(r). 

2.2. Diffusion Coefficients and Zeta Functions 

We will consider the Lorentz gas obtained by unfolding the Sinai 
billiard. The coordinate in the unfolded system is called 5:. The corre- 
sponding vector in the billiard (or the unit cell) is x. They are related by 
translation ,-~- x e T, where T is the group of translations building up the 
Lorentz gas from the unit cell. 

The diffusive properties can be extracted from the average 

(e  a- (?'~-01-.,-ol ) .,-0 (12) 

The average is taken over one unit cell. Again we must perform the trick 
of introducing a multiplicative weight and then by differentiation extract 
the average in which we are interested. 
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It was demonstrated in ref. 12 that this average can be computed by 
considering the dynamics in the unit cell only. This is obtained by inserting 
the weight 

w(x,  t) = e p IJ'~')--"~ (13) 

into the evolution operator (4). The diffusion constant is now given by 

• 02 
D =  lim 1 ( ( f (x0 )  ' = " - - t r & ~  (14) - - X o ) - ) . , . o  O / ~  /~ ,=o  

, -  w~ vt i= i ' i= i 

where the sum is taken over spatial components of the 2v-dimensional 
phase space. (We conform with ref. 12 in the definition of D; in some work, 
e.g., ref. 13, this differs by a factor of 2.) 

So far all our expression, have been exact [although (5) lacks a 
rigorous proof].  We now turn to more approximate considerations. 

2.3. Approximate Zeta Functions 

In recent publications we have investigated a way of approximating 
zeta functions for intermittent systemsJ v'9'j4~ We call this the BER 
approximation after the authors of ref. 16. In an intermittent system 
laminar intervals are interrupted by chaotic outbursts. Let zli be the time 
elapsed between two successive entries into the laminar phase. The index i 
labels the ith interval. Provided the chaotic phase is chaotic enough, the 
lengths of the intervals A i are presumed uncorrelated, and ,J may be con- 
sidered as a stochastic variable with probability distribution p(A). The zeta 
functions (unit weight w = 1 ) may then be expressed in terms of the Fourier 
transform ofp(A ) 

fj Z ( k ) ~ 2 ( k ) - l -  e - i k ~ p ( A ) d A  (15) 

We refer to ref. 7 for a derivation. Due to the normalization o fp (~)  we see 
that leading zero ko = 0 is by construction exact because of probability con- 
servation. 

In order to compute the probability distribution we introduce a sur- 
face of section (SOS). This should, according to the BER prescription, be 
located on the border between the laminar and chaotic phases. We call the 
phase space of the SOS D and its coordinates x.,.. The flight time to the 
next intersection is then a function of x,.: A.,.(x.,.). The probability distribu- 
tion then reads 

p ( A )  = f 6(A - A~.(x.~)) ps(x~.) dxs (16) 
an 
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where p,,(x,.) is the invariant density, which is uniform, p.,.(x.r dx,. = dxs/~a 
dx,., for a Hamiltonian ergodic system, assuming of course that the SOS 
coordinates are canonically conjugate. 

It is straightforward to include weights in this formalism, ~9) such as the 
weight w = I A(x0, t)l ~ introduced in Section 2.1. The local expansion factor 
over one interval A,(x.,.) is also a function of x,.. The zeta function is then 
related to a generalized distribution 

p,(A) = ~ ,  IA.,(x,.)l' 6(d - A,.(x.,)) dx ,  (17) 

The zeta function Z,(k) is obtained as 

2~(k)  =- 1 - e- ikJp~(A)  dA (18) 

3. A P P L I C A T I O N  T O  T H E  L O R E N T Z  G A S  

We now begin our study of the Lorentz gas on a square lattice. The 
lattice spacing is unity, each disk is circular with radius R < 1/2, and the 
point particle bouncing around has unit velocity. The unit cell of this 
system, the Sinai billiard, ('7) whose dynamics we will study, is indeed an 
intermittent system; there exist periodic orbits with arbitrarily small 
Lyapunov exponents log A r / T  p. The disk will define our SOS. We use the 
two angles q~ and cc defined in Fig. l a as coordinates. The normalized 
measure is then dx,. = dd~ d(sin 0Q/4n. Consider now a segment of the trajec- 
tory between two disk collisions. This segment can be labeled according to 
the disk that would be shit in the unfolded system; the label q = (n.,., ny) is 
the associated lattice vectorJ 9~ It is easy to realize that only disks 
associated with a coprime lattice vector may occur. We then partition the 
SOS into subsets/2q where/2q is the part of /2  for which the trajectory hits 
disk q. 

The purpose is now to apply the BER approximation to this system 
and compute Lyapunov exponents and diffusion constants. ~ ~4) 

3.1. Ca lcu la t ion  of p . (L l )  

We will illustrate our method by the following rather crude approxima- 
tion ofp~(A) (the nature of the crudeness will be discussed below): 

"((2 - r)/2) 2 R l -~A ~, 1 
a .< 2-/ 

p~(A) ~, F((2 - -  r)/2) 2 2~/'--3R -*/2-'- 1 (19) 

F - -~-  r-) zl, _ 3~/_, , a >  2-/ 
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a) 
/ 

/ /  

O , /  
f -  

Fig. 1. (a) The Sinai billiard with definitions of the variables ~ and ct. (b) The unfolded 
system with free directions (corridors) indicated. (c) The region of integration in Eg. (27). 
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Fig. 1. (Cont#med) 

This expression was used already in ref. 14, but as it plays a central role in 
this paper we present its derivation in some detail. Complementary details 
may be found in refs. 9 and 14. 

We start from expression (17) for p~(A). First we smear the distribu- 
tion, that is, we replace the delta function with some extended distribution 
~,. The exact form of this function is irrelevant; the only thing we assume 
is that it is wide: a >> 1. In most applications in this paper we ale interested 
in evaluating the zeta function in the vicinity of k = 0 and it is evident that 
the smearing of p,(zl) will only have a minor effect there. 

We now have 

t "  
pr(LJ) = ~ J~, IA~(x~)[ ~ 6~(A - ~Js(xs))dx~ (20) 

The large width a allows us to move the smeared delta function to the left 
of the integral sign because the variation of A,(xs) over ~q  is of the order 

R and we have (y >> 1 > R. We have 

p~(A)=~ 6~(zl--q) Ia [As(xs)[r dxs=~ 6~(A-q)aq(Z) (21) 
q q q 

We have chosen the length of the lattice vector Iq[ = q as the average of 
~.(xs) over ~q.  The local expansion factor is ]As(x~)] =2A,(xs)/Rcos (o~) 
to leading order in R. 
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It is easily shown that the phase space area taken up by disk q is given 
by the inequality 

q sin(q~ -~ )+s in (m)  < 1 (22) 

where 0q is the polar angle of the lattice vector q. Generally parts of this 
region are eclipsed by disks closer to the origin. So in order to find ~2q one 
has to subtract these. We will focus on the limit of small R, which gives the 
more easily handled inequality 

R(~b-0q  -~)+s in (c t )  < 1 (23) 

Let us begin with the lower part of P~(A): A < 1/2R. In ref. 9 it is 
shown that if disk q lies within a certain radius q < 1/2R, there are no eclip- 
sing disks in front of it, and expression (23) may be used directly, so the 
integral is easily evaluated: 

1 a q ( r ) = ( ~ ) r ~  ;a cosl-~(oO d~dq~ 

~ F(2-- r) (24) 

At this point we can make a simple consistency check on Eq. 24 by 
putting r -  l; this amounts to studying the topological zeta function. Then 
aq(l) = ] and the trace is, as it should, just counting periodic orbits; see 
ref. 9 for more details. 

In order to find an approximate expression for p~(A) we must know 
the density of coprime lattice points, i.e., the average number d,.(r)dr of 
such points having a distance between r and r + dr from the origin [ as this 

r , r  ! is a highly irregular function, one rather calculates its integral ~o d,.O ) dl ]. 
One may then just copy the derivation of the summatory function of 
Euler's function #(t)  = X,', = t $(n) with minor modifications? ~81 The leading- 
order result is d,.(r) ~ (12/z0 r. (In ref. 14 we estimated d,. in a simple way, 
avoiding all number-theoretic intricacies; the result was only 2% wrong). 
This yields 

12F((2-r)/2)2R~-~A~ (25) P~(A)=~'~'~(A--q)aq(r)-~ z F ( 2 -  r) 
q 

It is obvious that these considerations require many disks inside the 
horizon 1/2R to be justified. The results therefore apply in the limit of 
small R. 
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Next we consider the opposite limit, A >> 1/2R. For each (coprime) 
disk q fulfilling q < 1/2R there are two (or one, depending on symmetry) 
transparent corridors in the direction q (see Fig. lb). ~ 13~ Beyond this criti- 
cal radius the accessible disks will be those adjacent to the corridors. (They 
still have to be coprime so they will lie on one side of the corridor only; 
see Fig. lb). We will discover that this will lead to a power-law decay of 
p(zl). For the moment, we will be interested in the particular power (as a 
function of r) and not the prefactor. For that reason we perform our 
calculation in the corridor having direction vector (I, 0), as all corridors 
provide the same power. In this corridor the accessible disks are the ones 
labeled (n, 1). Disk (n, 1) is shadowed by (1, 0) and (17 - 1, 1 ). We need to 
evaluate the integral [cf. Eq. (24)] 

J" = I~ c~ -~(~) dc~ &b (26) 
q = t n ,  1) 

It is more convenient to consider the sum 

j,=f 12,  
i = n U i ' ~ n  "f2q = el. I1 

because this integral has support from a triangle in the sin (~), ~b plane (see 
Fig. lc) (it is a triangle only in the limit n--+ oo of course). 

From Eq. (23) one can deduce that the base length (in the ~b direction) 
and the height (in the sin a direction) of this triangle scale as 1/i,. A short 
calculation now yields that J,, ~ 1/1l 2 - r /2 ,  Differentiation gives j,, ~ l/r/3- r/2 
The fact that lq ~ n  together with Eq. (24) implies that the aq's decay as 
- 1/n 3-3~P-. The density of accessible disks is uniform in zl (since they lie 

along the corridors), so our final result is 

1 1 
p(A) ~ z13_3r/2 d >>~-~ (28) 

This power law does not depend on the small-R limit. 
Next we assume that Eq. (28) holds whenever A > I/2R. The prefactor 

of Eq. (28) is then determined by demanding that p~(A) is continous at 
d = 1/2R. In order to get correct normalization for r = 0 we multiply the 
entire p, (a)  by ( / ~ / 3 )  2 and we arrive at Eq. (19). This approximation 
crudely neglects the transitional behavior above A = 1/2R. The error thus 
induced will be discussed in Section 3.4, but the present approximation will 
be very handy for estimating the Lyapunov exponent. 

As a check we compute the mean laminar length ( A )  in the distribu- 
tion (19) with r = 0, which is found to be ( A )  = 1/2R, which indeed agrees 
with the small-R limit of the exact result ( A )  = 1/2R - ~R/2. ~19j 
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3.2. Lyapunov Exponents 

The approximate zeta function we are going to work with is obtained 
by inserting Eq. (19) into Eq. (18). The power-law tail ofp(A) implies that 
the leading zero k - - 0  of the zeta function is-also a branch point and the 
integral (18) diverges in the half-plane Im(k)>  0. As the asymptotics of the 
trace depend on the vicinity of the leading zero, we need the analytic con- 
tinuation of the zeta function into the upper half-plane. We will achieve 
this by means of the (generalized) series expansion around the branch 
point z = 0 ,  which is straightforward since the zeta function may be 
expressed in terms of standard functions 

4 / ' ( (2  - r)/2)-" R -2~ 
2~(k) ~ 1 

3 F ( 2 - r )  2 n+~ 

x[z-'-~7(t+l'z)+z2-3~/21-'( -2+3r )] ~- ,z  (29) 

where z = ik/2R. The functions y(a, z) and F(a, z) are incomplete gamma 
functions.C2~ 

Expanding this to first order in r gives 

Z={Z+3(Iogz+)P-I-~)"" } 

+{f -7+log(2R2)]+[l@+log(2R2)lz...}r... (30) 

The derivation of this expansion is rather lengthy, but the only step that is 
slightly tricky is the expansion of the incomplete gamma function F(a, z) 
near an integral power a. We have for convenience thrown away all indices 
of the zeta function and use the strict equality sign, but we must not forget 
that we work with an approximation of an approximation of the exact zeta 
function. 

We must now proceed with some care, since the leading zero is not 
isolated; a branch cut along the negative real z-axis reaches all the way up 
to it (we have chosen the principal branch of the logarithm). 

We are interested in the following derivative of the trace [cf. Eq. (8)] 

d s d 1 f ,,d 
~ t r  - - ~  ~m.J e: ~logZdzl~=o 

_ •  :,,d d 
-2r~i J e drd-zz log Z l~=o dz (31) 
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where we have differentiated inside the integral sign (this step, although tri- 
vial, is a key step). We have now formulated Eq. (6) in the rescaled and 
rotated z-phme using rescaled time t'---2Rt. The function to be Fourier 
transformed is 

d d  
dr dz log Z[~=o 

= [ 7 _  log(2R2)] a + ( z / 3 ) ( 2 1 o g z + 2 y - 5 / 6 ) . . .  
z + (z2/3)(log z + y -  11/6) 2... 

= [ ~ -  ~ogl2~-~,l ( ~  + 3~ �9 - - ) (32) 

where we have kept only those terms yielding the leading term and the first 
correction. Collecting it all together yields 

1( 1 ) ] 2=,lim_.~ 2R -log(2R'-) 1 +~-~  . . . .  2R - log(2R a) (33) 

The limiting value is due to the behavior of the zero [Eq. (9) is indeed 
valid], but the power-law correction is due to the fact that it sits on a 
branch point. The particular size of the first correction is not very accurate, 
as we will realize after Sections 3.4 and 3.5 (see also Appendix), but we just 
note in passing that there exist slowly decaying corrections indicating slow 
convergence of the Lyapunov exponent in numerical computations. 

In Fig. 2 we compare numerical results on the Lyapunov exponent 
with our expression 2 = 2 R [ V - l o g ( 2 R 2 ) ] .  The numerical values, from 
ref. 21, are calculated for rather large disk radii, where we should not 
expect much agreement a priori. Nevertheless our estimate is only 5% 
wrong when R=0.1. The reason why the numerical values exceed our 
estimates for large R is easily understood. This is because the disk faces (in 
the unfolded system) come closer to each other, so that taking the length 
of the relevant lattice vector (as we did) overestimates the time of flight 
between them. 

The Lyapunov exponent of the corresponding Poincar6 map with the 
disk defining the SOS is related to the Lyapunov exponent of the flow 
according to 122~ 

7 "~ 2ma p = 2 ( / I s )  ,~ 2/2R ~ [ ~_ -- log(2R-) ] 

We see that 2 m ~ p ~ - 2 1 o g ( R ) + 7 / 1 2 - 1 o g 2  when R-o0,  which agrees 
with the conjectured limit 123' 2 4 ) 2 m a  p = --2 log(R) + C+ O(R). Indeed we 
have found an estimate of the constant C ~  7 /12- log  2 ~ -0.110. This is 
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Fig. 2. 
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Lyapunov exponent versus disk radius according to numerical simulation and 
Eq. (33). 

very close to the numerical value found by ref. 23, as far as we can extract 
it from Fig. 2 in ref. 23. Refinement of this estimate amounts to refinement 
of the expression for p(A); we will return to this problem in future work. 
The smallness of the fudge factor (3/n)-" used at the end of Section 3.1 
indicates why the error seems so small. 

Most theoretical work on the small-R limit of the Lyapunov exponent 
or Kolmogorov-Sinai entropy tries to verify the term - 2  log R, ~23'z51 and 
few authors attack the problem of computing C. The constant C has been 
computed in ref. 26 for the related problem where the disks in the Lorentz 
gas are distributed randomly in the plane. The authors found that in this 
case the constant is C =  1 - l o g  2 - y  ~ - 0 . 2 7 0 3 6  (with the same units and 
density of disks as in our case). 

Although our zeta function is only expected to work at the immediate 
vicinity of k = 0, we cannot resist the temptation of using Eq. (19) to com- 
pute the generalized Lyapunov exponents. In Fig. 3 we plot the generalized 
Lyapunov exponents thus obtained for different disk radii. Note that when 

> 0 the leading zero is indeed isolated and we do not have to worry about 
the cut. The position of the zero is computed numerically. 

The quantity 2(1) is the topological entropy, which tends to a finite 
limit when R ~ 0 .  If we, as in Fig. 3, use Eq. (19), it is easy to show that 
2 ( I ) - ,  (4n/3)~/2~2.0466, as this depends only on the small-A limit of 
p~= ~(A). However, because of this, we can avoid the fudge factor and use 
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Fig. 3. Generalized Lyapunov exponents ),(r) versus r lbr two disk radii. 

Eq. (25) instead and obtain 2(1)--+ (12/n)~/2"~ 1.95441, which is Berry's 
estimateJ z7~ However, the exact small-R limit is 2 ( 1 ) ~  1.9133307629...J 91 
The reason for the error in Berry's estimate is purely number- 
theoretic--our approximation was expected to work around k = 0  and 
down in the complex plane the zeta function depends also on the correc- 
tion to the mean density of coprimes. 

When r < 0 the branch cut itself will provide the leading behavior of 
the t race--a  power law, c9" 141 and the generalized Lyapunov exponent will 
be zero. This means that 2(r) cannot be analytic at r = 0. This is referred 
to as a phase transitionJ ~1~ 

3.3. A First  C a l c u l a t i o n  of  t h e  D i f f u s i o n  C o n s t a n t  

We now turn to the computation of the diffusion constant. We will 
arrive at our final result in a roundabout way, We start with the coarse 
description of Section 3.1 and then carefully investigate what details need 
to be improved. 

We calculate the generalized probability distribution p..(A) using 
appropriate weight (13). We keep only the spatial components of fl yielding 
the two-dimensional vector I~, As we study smeared p~(A), it suffices to 
approximate the spatial part of ( f ' ( x ) -  x) with the lattice vector q. So, we 
must now compute the generalized probability distribution pp(A) ~ la Sec- 
tion 3.1, but using the weight exp(p.q)=exp[flqcos(~b/~-(~q)] ,  where we 
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have written q = q(cos(~bq), sin(~bq)) and II = fl(cos(~bp), sin(~p)). We can use 
the result of Section 3.1 to some extent, since we realize, after inspecting 
Eq. (17), that we can make the following factorization: 

pp(A) =po(A) ~ e"JPc~ dq~q [ d~q (34) 

In order to find the support of this integral we need to know the angular 
distribution of accessible disks for a particular value of q = zl. To this end 
we introduce the following simplifying assumptions 

1. The coprime lattice points are distributed isotropically. 

2. If q > 1/2R, we assume only four corridors with ~bq equal to one of 
0, n/2, n, or 3n/2. 

Assumption 2 means a rather brute neglect of the transitional behavior 
at A ~ 1/2R. We neglect the important fact the number of corridors grows 
when R ~ 0. We comment on this in Section 3.5. The important thing now 
is that we preserve the symmetry in order to prevent net drift. 

We first consider the case q < 1/2R. Using assumption 1 above gives 

4 1 ep~J cos pp(A)= ~ R ~ clq~ 

4 
=-g mo(P~l 

4 ( fl "-A2 ) 
= s R  1 -t 4 "" ' 

1 
A < -  (35) 

2R 

where I o is a modified Bessel function. In order to calculate the zeta func- 
tion we need the Fourier transform of this, 

io ,/'-R 2( z z'- ) ~'_~ ( ~ z z'- ) pp(A)e-ik'JdA=~ 1 - ~ + ~ - . . .  + -~+] - -~  . . . . . .  (36) 

where we have used resealed variables z = ik/2R and p ' =  p/2R. 
Next we consider the limit q >  I/2R. We find, using the 

assumption above, 
second 

2 I 1 
pp(A) 3(2R)2 d3 (ea'S +e-P:"a +eP;'a +e-P:"a), d>~-~ (37) 
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Fourier transforming this gives 

f ~ e -~k'J dd pp(d) 
l/2R 

I _ t P =~[E3(~-fl.,.)+E3(z+fli,.)+E3(z-fl;,)+E3(z+fl:,) ] (38) 

The resulting zeta function can now be expanded 

fo Zp = 1 - pp(A) e -ik~ dA 

l ( , " . t + i~ [ z - ft.,.)- log(z - ill,-) + (z + fl,.)2 log(z + fl~.) 

+(z-fl~,,)21og(z-fl;,)+(z+fli,,)21og(z+fl;,)] ... (39) 

According to Section 2.2, we are interested in the following quantity: 

02 02 
~.2. + ~-~j  tr ~ ' l p '~o  

02 (~2"~ 1 d 
3fl?~ . ~ l o g Z & l p = o  

1 1 ( 0 2 c 3 2 ) d  
- (2R)22ni f  e:" ~fl _+~ .  ~ l o g Z l p = o d z  (40) 

We now proceed in the same way as in Section 3.2. We want to determine 
the asymptotic behavior of the Fourier transform of 

(02  02"~d 2 ( 4  ) 
~ + ~--~,2 - - l o g  Zlp=o - y  Off.,, Jdz ~ ~ z  2 ~ - l o g z  (41) 

To this end we now need the integral 

2-~iil l~ - y -  log t') (42) 

In deriving this it is convenient to use contour integration and let the con- 
tour encircle the negative real z axis. We thus find the following diverging 
diffusion constant [D = lira, ~ o~ D(t)]: 

1(02 0:) 1 
D ( t ) =  ;-xs~,+Z~gOfl.,. Oily t r ~ ' l p , = O = l - - ~  [ l + 3 1 o g ( 2 R t ) ]  (43) 

822/84/3-4-30 
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This logarithmic divergence of the diffusion constant agrees with ref. 13, 
but the prefactor is not correct. The computation will be refined in Sec- 
tion 3.5. The important thing to learn from this section is that the 
Laplacian exposes the logarithm in the series expansion of the zeta func- 
tion. So we now know where to focus our attention, namely at the tail of 
pp(A). 

3.4. A Closer Look at the Tail 

At the end of Section 3.1 we aimed at finding a good approximation 
for p~(A) for the whole range I/2R<A < m. This was convenient for the 
calculation of the Lyapunov exponent, which depends on the integral 
Ip~(d) dA for small r, and we thus needed a uniform approximation to 
p~(A). But the diffusion constant depends only on the A ~ oo behavior of 
p(A). 

In this section we restrict ourselves to the case t = 0 and will compute 
the limit lim,j ~ ~ A3po(A). 

Let us look at the corridor with direction vector q = (n,., n,.), where n.,_ 
and ny are coprime. Suppose for a moment that q lies in the first octant, 
so that nx and ny are positive and n.,. ~> ny. The accessible disks in this 
corridor are the ones labeled q'+ nq and q"+ nq, where q' and q" are the 
predecessor and successor in the Farey sequence of order n,. (see Fig. 1 and 
recall the definition of Farey sequences; t~8) see also Section 3.2 in ref. 9; the 
statement above should appear obvious). A calculation analogous to the 
one at the end of Section 3.1 now gives the following expression for aq(0) 
[as defined in Eq. (24)]: 

12qR + l / (2qR)-2 (!74) 
aq,+,,,l(O) = 2rt q2n3 + 0 (44) 

and the same holds for the sequence q" +nq. The contribution to po(A) is 

~aq,+,,q(O)6(A-lq'+nq[)=-~3 ~ 2qR+ - 2  
i i  

(45) 

To compute the tail ofpo(A) we need to sum over all coprime q such that 
q < 1/2R. We restrict the summation to the first quadrant q e S: 

9 2 S =  {q=(nx ,  ny) [ ny>0 ;  nx~>0; (n,., n:,)= 1; (n?,.+ny) < 1/2R} (46) 
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and multiply the result by four, to account for all four quadrants, and then 
by two, to account for both q' and q" defined above. The result is 

where 

4 
Po(A) ~-~3 a(R) + 0 (47) 

1 - 2 )  (48) a ( R ) =  ~' 2qR +~q R 
t I E S  

The R ~ 0 limit of a(R) is given in re['. 13: a ( R ) =  (1/4nR2)[ 1 + O(R1/4)]. 
Let us expand the unweighted zeta function Zo into the more general 

series 

Z0 = ~ aiz~ + ~ b,z'logz (49) 
i =  I i = 2  

For the approximation ofpo(A) worked out in Section 3.1 we have b~=0 
for i~>3. The correct value of b2 may be computed from Eq. (47) (using, 
e.g., standard expansions of exponential integrals) and is found to be 
b2(R) = 8R2a(R)/rc and the small-R limit is b2--* 2/n 2, which differs con- 
siderably from the result in Section 3.1. The reason for this error is the 
neglect of a smooth transition at A =  1/2R in Eq. (19). This crossover 
behavior is indeed slow, as is indicated from the O(1/A 4) term above. 
Generally we expect the asymptotics of the tail to look like p ( A ) ~  
~,,>~3 c,,/A", so that there may exist nonzero bi of any order. 

3.5. A Second Calculation of the Diffusion Constant 

One might suspect that the coarse assumptions, especially assump- 
tion 2 in Section 3.3, could give rise to an error in the prefactor of superdif- 
fusion. We will now demonstrate that the prefactor is robust against 
refinements of this assumption. A better estimate of pp(A) is obtained by 
replacing exp(ff,.A)=exp[fl'Acos(~/~)] in Eq. (37) with the averaged 
quantity 

1 fc/~' ep'J cost+p-~q)d~q (50) 
2cA _,.ij 

The integratidn range decreases like lift, since the width of the corridor is 
constant. For sufficiently large A we can take fl' cos(q~p - q~) ~ ill,- + fl~,~b and 
find that the integral above is 

eP:~J[ 1 + O(fl~,2)] (51) 

The correction is O(fl '2) and has no effect on D(t), as anticipated. 
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In the considerations in Section 3.3 we also reduced the number of 
corridors to four. Or, more precisely, we bunched together all corridors 
into these four, but ensured that the correct Z0 was recovered when 
ft.,. = fly = O. In doing this we destroy all angular information about the dif- 
fusion, but the size of diffusion is left unaffected, as is easily realized by 
studying how the Laplacian acts on (39). 

We are led to the conclusion that the prefactor of superdiffusion 
depends solely on the coefficient b2 of the unweighted zeta function (49) 
according to D(t)  = (b2/2R) log t. Inserting the correct value of b2 from the 
previous section, we arrive at 

D( t ) - 4Ra(  R ) l~ t --* R--@ - l~ R ---, O (52) 

which is indeed the suggested exact result. ~3~ 
Again there are slowly decaying corrections to D(t)  and it is not sur- 

prising that the numerical detection of this diffusion law has eluded serious 
attempts.~28 

4. C O N C L U D I N G  R E M A R K S  

The main advantage of the approximation outlined in this paper is its 
apparent simplicity. It is far easier to apply than a proper cycle expansion 
would be, taking all the (infinite number of) pruning rules into account, 
and it gives a very good description of the leading zero. If one persists in 
a periodic orbit approach, one has to realize that the slow convergence 
of the leading zero reflects the nature of the singularity at the origin and 
this singularity carries information about the dynamics in which we are 
interested. 

Apart from the excursion down in the complex k-plane when com- 
puting generalized Lyapunov exponents, our interest in this paper has been 
restricted to the behavior of the zeta functions around the origin k = 0 or 
equivalently the coarse structure of the traces. We could thus work out a 
very coarse description of p(A).  In ref. 9 we demonstrated that refinement 
of the expression for p(A)  down to a scale ~ R leads to a good description 
of the trace down to this scale. In order to probe finer scales, e.g., to study 
semiclassical spectra, one has to find corrections to the BER method. To 
this end it might be useful to try to combine periodic orbit techniques with 
the asymptotic knowledge of zeta functions and traces obtained from the 
BER method. 
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The major drawback of the BER approximation is the lack of an error 
term; so far we have no bounds on the errors in our computations. If is of 
course highly desirable to work out such bounds, which would put the pre- 
sent considerations on mathematically firm ground. 

A P P E N D I X  

Here we derive Eq. (3). Notations used are defined in Section 2.1. The 
approach is inspired by ref. 29. 

First we expand the invariant density p(x) into a sum over periodic 
orbits. The invariant density is obtained as the following time average: 

p ( x ) =  lim l i m l I :  ~-o ~ (~(x-f'(Xo)) dt (A1) 

where e is a small smearing width. If e = 0, this is true for almost all Xo, but 
Xo must not lie on a periodic orbit. But as long as e ~ 0 we can safely put 
Xo = x, irrespective of whether is a periodic point or not, and get 

p(x) = ~irn ~ l im  < ~, 6Ax- f ' (x ) )d t  (A2) 

The next few steps are yet not rigorously verified expect for a very restricted 
class of systems, I-'91 but the result is believed to hold for a much bigger 
class. We differentiate with respect to T and interchange the limits e--* 0 
and T---, co and get 

p ( x ) =  lira ( ~ ( x - - f T ( x ) )  = lim I 6 ( y - f r ( y ) ) O ( x - y ) d y  (A3) 
T ~  ~ T ~  

The integral has support from periodic points only. We split the integration 
variable y according to dy=dy _L dy u, where y .  is perpendicular to the 
flow and Yu is parallel. We perform the integration and get 

I dyu (A4) 6(T-nTp) f i(x- y) v(y) 
p(x) = lim ~ Idet (1 - M ~ ) I  ,,Ep 

T ~  c~ pEp.p.o, n= 1 

where v(y) is the speed at y. 
The expectation value can now be expressed in terms of periodic orbits 

and we arrive at Eq. (3) 
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lim ( w )  = lim I w(x, t) p(x) dx (A5) 
f ~  t ~ o 3  

3 ( t - - n T p )  
= lim ~. Tp w~ [det (1 - M p ) [  (A6) 

t ~ crJ p ~ p . p . o ,  n ~ l  

where we have used the fact the weight is constant along a periodic orbit 
SO 

f, w(y, t) dytl/v = w(yp, t) f dyll/v = w(y m t)Tp 
. ' E p  

where Ye is any point on a primitive periodic orbit p. The multiplicative 
property of the weight finally implies w(y e, t) = W(yp, Tp)"= w~. 

After having established the final expressions, one should provide the 
remaining delta functions with a small width. 

In Eq. (A6) we let t and T approach the asymptotic limit together, 
T =  t. We can thus only extract the leading asymptotic behavior of 
(w(x, t)) .  This is because the normalization ~ p(x) dx can approach unity 
rather slowly. In the Sinai billiard we have ~ p(x)dx ~ 1 -C(R) / t ,  as can 
be verified by the methods described in this paper. 

If one wants to rigorously verify Eq. (A6) for the Sinai billiard, one 
has to deal with the presence of marginally stable orbits. However, these 
form a set of zero measure in phase space and subtraction of this set from 
Eq. (2) does not affect the result, so we do not consider this as any 
problem. 
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